
Introduction to Ellipse

DR. DINESH KUMAR SHARMA

PROFESSOR IN MATHEMATICS

Department of Mathematics

Maharaja Agrasen University Baddi  Solan HP

Subject: Plane Geometry 

Subject Code: BMAT 402

B.Sc. Non-Medical Fourth Semester



 Ellipse – An ellipse is locus of a point which moves 
so that its distance from a fixed point is in a 
constant ratio, less than one, to its distance from a 
fixed point.

 A set of points P in a plane such that the sum of the 
distances from P to 2 fixed points (F1 and F2) is a 
given constant K.

 Fixed points - foci



 Major axis – the segment that contains the 
foci and has its endpoints on the ellipse.

 Endpoints of major axis are vertices

 Midpoint of major axis is the center of the 
ellipse.

 Minor axis – perpendicular to major axis at 
the center

 Endpoints of minor axis are co-vertices
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a > b

Length from center to foci = c

c2 = a2 – b2

Foci are always on major axis



Write an equation if a vertex is (0, -4) 
and a co-vertex is (3, 0) and the 
center is (0, 0)
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 Equation of a circle:

 Center (h, k) 2 2 2( ) ( )x h y k r   

2 2 2 2

2 2 2 2

( ) ( ) ( ) ( )
1                  1

                    (0 a, 0)     vertices         (0, a)

                  (0, 0 b)   co-vertices       (0 b, 0)

                   (0 ,0)      foci    

x y x y

a b b a

c

   

 

 

            (0, 0 c)



2 2 2 2

2 2 2 2

(h a, k)     vertices         (h, k a)

                 

( ) ( ) ( ) ( )
1                  1

     

 (h, k b)   co-vertices       (h

      

b, k)

                   (h , )

     

 

    

    c k

x h y k x h y k

a b b a

 

   
  









 foci               (h, k )c

Remember, a > b



Eccentricity of an Ellipse

 Measures how ‘circular’ the ellipse is 
(describes the shape of the ellipse.)

 .  
 If e is close to 0 then foci are near 
center and more round.

 If e is close to 1 then foci are far from 
center and ellipse is elongated

,  so  must be between 0 and 1 (0<e<1)
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Find center, foci, length of major and 
minor, vertices and co-vertices and 
graph.
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Find center, foci, length of major and 
minor, vertices and co-vertices and 
graph.
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Find center, foci, length of major and 
minor, vertices and co-vertices.
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 Foci at (-1, 0) and (1, 0) and a = 4
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